Q5. Incandescent bulbs are designed by keeping in mind that the resistance of their filament increases with increase in temperature. If at room temperature, 100 W, 60 W and 40 W bulbs have filament resistances R_{100} , R_{60} and R_{40} , respectively, the relation between these resistances is (2010)

(A)
$$\frac{1}{R_{100}} = \frac{1}{R_{40}} + \frac{1}{R_{60}}$$
 (B) $R_{100} = R_{40} + R_{60}$ (C) $R_{100} > R_{60} > R_{40}$ (D) $\frac{1}{R_{100}} > \frac{1}{R_{60}} > \frac{1}{R_{40}}$

(C)
$$R_{100} > R_{60} > R_{40}$$
 (D) $\frac{1}{R_{100}} > \frac{1}{R_{60}} > \frac{1}{R_{40}}$

Sol. The power of a bulb having resistance R and operating at voltage V is given by $P = V^2/R$. Let the three bulbs operate at temperatures T_{100} , T_{60} and T_{40} above room temperature. The resistances and powers of three bulbs at operating temperatures are given by

$$R'_{100} = R_{100}(1 + \alpha T_{100}),$$
 $V^2/R'_{100} = 100,$ $R'_{60} = R_{60}(1 + \alpha T_{60}),$ $V^2/R'_{60} = 60,$ $R'_{40} = R_{40}(1 + \alpha T_{40}),$ $V^2/R'_{40} = 40,$

where α is the thermal coefficient of resistance. Eliminate R'_{100} , R'_{60} , and R'_{40} to get

$$\begin{split} \frac{1}{R_{100}} &= \frac{100}{V^2} (1 + \alpha T_{100}), \\ \frac{1}{R_{60}} &= \frac{60}{V^2} (1 + \alpha T_{60}), \\ \frac{1}{R_{40}} &= \frac{40}{V^2} (1 + \alpha T_{40}). \end{split}$$

We expect the higher power bulb to have a higher temperature i.e., $T_{100} > T_{60} > T_{40}$. This gives us, $\frac{1}{R_{100}} > \frac{1}{R_{60}} > \frac{1}{R_{40}}$ and $\frac{1}{R_{100}} \neq \frac{1}{R_{60}} + \frac{1}{R_{40}}$. We encourage you to measure the resistance of a bulb (by using a multimeter etc.) at room temperature, calculate resistance at operating temperature, and get some estimates of α and operating temperature.